
UCRL-JC-130363
PREPRINT

Visualizing Hilbert Curves

Nelson Max

This paper was prepared for submittal to the
Institute of Electrical and Electronics Engineers Visualization ‘98

Research Triangle Park, NC
October IS-23,1998

April 1, 1998

This is a preprint of a paper intended for publication in a journal or proceedings.
Since changes may be made before publication, this preprint is made available
with the understanding that it will not be cited or reproduced without the .

permission of the author.

Visualizing Hilbert Curves

Nelson Max
Lawrence Livermore National Laboratory

P.O. Box 808 /L-307
Livermore, California 9455 1, USA

(max2@llnl,gov)

Abstract

A computer animated movie was produced, illusrrating
both 20 and 30 Hilbert curves, and showing the transi-
tion from 20 to 30 with the help of volume rendering.

Introduction
Hilbcrt curves are continuous curves which pass at least

once through each point of a square or cube. They can be
defined as the limit of a sequence of mappings of succcs-
sivcly smaller dyadic subintervals of the unit interval to
small subsquares or subcubes.

These finite approximations are useful for coding imag-
es or volumes. Area coherence in an image produces high
correlation in the sequence of data values at pixels, when
they arc traversed in the order of a Hilbert curve approxi-
mation, allowing efficient data compression. Similarly,
tracing out a volume Hilbert curve can take advantage of
data coherence in all three dimensions.

This paper describes the production of an animated film
illustrating 2D and 3D Hilbert curves. The content of the
film is described in section 1, the mathematical definitions
and algorithms for the approximations are given in section
2, and the volume rendering techniques are discussed in
section 3.

1. The Film Plot
The animation starts with a circular tube, which de-

forms continuously through smooth piecewise-circular ap-
proximations to the 2D Hilbert curve. The fourth order
approximation is shown in figure 1. (See color supplement
at the end of the volume for figures 1 through 8.) The tube
changes to a square cross section, and by the fifth order ap-
proximation, shown in figure 2, it is touching itself. The
circular arcs then square off so that the approximation ap-
pears to cover the square, and the surfaces become partial-
ly transparent, to reveal the glowing volume density shown
in figure 3.

The curve is yellow, with its parametrization indicated
by short segments in light green, purple, and dark green,

repeated in eight cycles. The origin of the parametrization
is advanced along the curve as the animation progresses,
so that it looks like a crawling colored snake. This indi-
cates the path of the curve even when the whole square is
filled up, Volume rendering extends this color indication
of the path to three dimensions, and the marble tile back-
ground helps in perceiving the volume opacity.

The closed curve. breaks between a purple and dark
green band and the front part begins filling up the cube as
a 3D Hilbert curve. By figure 4, the second purple band
has started into the cube, and by figure 5, the whole curve
has moved over to the cub% and again becomes closed.

Figures 3 through 5 show high order approximations,
using a recursive rendering algorithm described in section
3 which only subdivides squares or cubes which are not of
homogeneous color. Between any two frames in the ani-
mation, many tiny squares or cubes change color, so the
motion is jerky. Figure 6 shows a switch to the third order
approximation, where the color boundaries move smooth-
ly. The surface is incised between cubcs which are not ad-
jacent on the approximation path, and in figure I, the
incisions have widened to reveal the squared off tube. This
is the reverse of the process, not illustrated here, between
figures 2 and 3. Finally in figure 8 the tube becomes
rounded, to give the 3D version of figure 1. In the anima-
tion sequence including figures 5 through 8 the camera is
slowly rotated about the cmx, so that motion parallax can
help make the 3D structure more evident.

2. Defining the Approximations.
The ‘2D Hilbert curve maps a fin the unit interval 10, 11

to a pair (I, y) in the unit square [O, l] x [O, 11. An approx-
imation of order n assigns the first n binary digits of x and
y, given the first 2~1 binary digits oft. The first bits of x and

) p
Figure 9. Ordering of the four subsquares.

1
y come from the first two bits oft according to the order-
ing of the four subsquares shown in figure 9. Thus

xbitZD[4] = (0, 0, 0, 1) ,

ybitZD[4] = (0, 1, 1, 0).

and, for the inverse mapping,

tbits2D[2][2] = (0, 1, 3, 2).

The higher order bits are defined recursively, using ro-
tated versions of this order, as shown at the left of figure
10. In the squares labeled 1 and 2 in figure 9, the pattern is

rk.1
1-1 L---u

a) Hilbert’s curve. b) My variant.

Figure 10. Second order approximations

just a reduced and translated version of the pattern in tig-
ure 9, but in squares 0 and 4, it is reflected and rotated.
Apart from the scaling and translation, the basic transfor-
mation for the pattern is given by one of the following four
matrices:

f, we must translate figure 9 by (-.5, -.5) so that the center
is at the origin, rotate by RZD[tot], and then translate back.
The product of these three afline transformations can be
represented by a 3 x 3 integer matrix for homogeneous co-
ordinates, which is used to transform the vector
(xbit2D[i2& ybit2D[t&, 1) to get (xt, yt, I). Howeverit is
more efficient to code, and easier to understand, if the 2 x
2 matrices given above are used, and the two translations
are done separately. As show in the code below, the coor-
dinates are multiplied by two before the first translation,
and divided by two after the second, to keep all arithmetic
in integers.
void t-to-xy(int n, int t, int *x, int*y) (

int j,k,rt[21[21, rqC21[21. vaL21. vb[21;
identity-matrix2DCrt);
*x = *y = 0;
for Ck = n-l; k >= 0; ++k) C

j = 3 & Lt >, (2*k));
va[ol = 2*xbit2D[jl - 1;
valll = 2*vbit2Dlil - 1:
matrix_times_vecto;2Dirt, va, vb);
*x += (CvbIOl + 1)/2) << k;
*y += (Cvbll, + 1),2) << k;
if (k > 0) (

matrix-copyZD(rt, rq);
if (k == n-l)

matrix_multiply2D(rq, SZD[j], rt);
else

matrix_multiply2D(rq, R2D[jl, rtl) ;I
1)

In the next stage we rotate figure IOa) by the matrix
R[to,], shrink it to half size, and use it each of the four sub-
squares. Thus the combined rotation R2D[r0~]R2D[f2~] is
used to determine x2 and y2 from fb5. We continue recw
sively generating the subsequent digits. The inverse func-
tion determining f from x and y is defined similarly using
tbits2D.

For the film plot described above, I needed a closed
curve, so I used the variant second approximation shown
in figure lob). To move the pattern in figure 9 to the four
subsquares in figure lob), I used the matrices:

R2D[3] = 9 ,: [1 S2D[3]= -I ’ [I 0 -1
I assume that for the nth approximation, the coordinates of
x and y arc given by n bit integers, with the highest order
bit of x indicated by x0, the next highest by x,, and so on.
When divided by the implied denominator 2”, these x and
y coordinates give the position of the lower left corner of
the corresponding subsquare. Similarly, the 2n bit integer
for z is divided by 2’” to get the left hand endpoint of the
corresponding subinterval. Thus the arrays xbit and ybit
determine xo and yo from the first two bits fol off. To get
the next highest bits xt and yt from the next two bits fzl of

To guarantee the continuity of the limit curve, I then
used the matrices R2D for all subsequent bits ofx and y, so
that a half-sized copy of figure lOa) appears in each of the
subsquares of figure lob), oriented by the matrix S2D[tol].
Thus the combined rotation to determine x2 and y2 from
fqg is S2D[fOt] R2D[f2& and the R2D matrices are also
used in the rest of the recursion. The resulting curve agrees
with Hilbert’s on the top half of the square, and the bottom
half is the mirror image of the top half.

The Hilbert curve. in3D is generated in the same way,
Using 3D vectors and matrices. The basic pattern shown in
figure 11 results in

xbit3D[8] = (O,O, O,O, 1, 1, 1, 1),

ybit3D[81= (0, 1, 1, 0, 0, 1, 1, 0],

zbit3D[81=(0,0,1,1,1,1,0,0),and

tbits[21[2][2] = {O, 3, 1,2,7,4, 6, 5).

nectcd the center A of the edge separating square (x, y) and
square (xp, yp) to the center B of the edge separating
square (x. y) and square (xf, yf), by a 90” circular arc
whose center C is the corner where these three squares
meet. If the three squares are in a row, with no common
corner, I joined A and B by a straight line. The same
scheme works in 3D; the circular arc joins the centers of
IWO faces of the cube.

Figure 11. Order of the eight subcubcs
The matrices to rotate this pattern into position in each

of the eight subcubes arc essentially those given in [Liu97]
but I have incorporated a rcflcction that rcvcrses the order
of traversal where necessary. This obviates keeping track
of the traversal order, which makes the algorithm in
[Liu97] unnecessarily complicated. Thus the 3D rotation
matrices are:

0 10

R3D[O] = i -1 0 0 0 1 01

100 i 1 0, 0 , R3D[31=
001

001
R3D[l] = ! 0, 0 I , R3D[2] =

100

;,;;].RWl= [ii.

10 0 -11
R3D[5]= 0 , 0 ,R3D[6]= 0 , 0 ,andR3D[7]=

[oolj I-10 OJ

0 -1 0
i J
-1 0 0 , and the recursion is similar to the 2D case

0 01

As in the 2D case, I needed a set of revised matrices for
the second order approximation, to product a close curve,
which agrees with the 3D Hilbert curve of [Liu97] in the
top half of the cube, and follows its mirror image in the
bottom half.

To get the piecewise circular approximation to the
curve inside the square (x, y) shown in figure 12, I comput-
ed t from (x, y) and then found the previous square (xp, yp)
from t-l, and the following square (xf, yfi from r+l. I con-

(A Y) B (xf, Yn

l-d--J A C

(XP, YP) I I
Figure 12. Construction of a circular arc.

It was a challenge to deform this arc through a continu-
ous family of piecewise circular curves into its position in
the next approximation. I had initially planned to end the
film by unwinding the 3D Hilbert curve back to a simple
circle, buy I did not have time to design the ncccssay 3D
deformation. It was also a challenge to get a smoothly
varying parametrization of the piecewise circular curves in
the family, for the purpose of deciding where to switch be-
tween the different colored bands. The parametrization
had to be nearly proportional to arc length, but also assign
the same lengths to the circular arc in figure 12 and the
straight line in the case that all three squares arc in a row.

3. Rendering Issues.
As described in section 1, and shown in the color fig-

ures 1 through 8, the colored bands move along the curve
during the animation. Thus, iff is a real number propor-
tional to the frame count, and s is the real parameter in
[O,l] along the curve, the color is determined by a periodic
piecewise constant function C(s -fl of the difference s -J?
The colors have four components, red, green, blue, and
opacity a, which is interpreted as the extinction coefficient
for volume rendering.

In the limit curves, which till in the whole square or
cube, the path of the curve is indicated by these moving
colored bands. They are revealed in the 3D case using
semi-transparent volume rendering.

The volume rendering is based on recursive octrce sub-
division of the level 0 unit cube. The octrec node cube at
level k is indexed by integers (x, y, z) obtained by multiply-
ing the coordinates of its front lower left corner by 2k. This
cube corresponds to an integer f by the inverse mapping

discussed in section 2, and to the subinterval of length 2-jk
of the unit interval, starting at s = 2-3kt. If [S -f, s + 2.” -fl
lies within one of the ranges where the color C is constant,
or if k = kmax, the maximum level of recursion, the cube
has a constant color, and can be compositcd onto the im-
age. If not, it is subdivided into its eight subcubes, they are
sorted in back to front order according to the position of
the viewpoint, and the recursive routine is called for each.

The volume projection uses the SGI hardware pipeline,
as described in [WMS98]. The projections of the edges of
a cube divide the image plane into polygons onto which a
single front cube face and a single rear cube face project.
The thickness d varies linearly across such a polygon, and
can be interpolated as a texture coordinate by the texture
mapping hardware. The second texture coordinate is the
extinction coefficient <, which in this application is con-
stant on each cube. The texture map stores a = 1. - exp(-
dt), which is the polygon opacity needed for correct com-
positing of a semitransparent volume density. (See
[WMS97] for details.)

When I produced the volume rendered Hilbert curve
with this rendering method, it looked too fuzzy, because
there were no clearly defined surfaces bounding each vol-
ume region. Therefore I added semitransparent polygons
to the front surfaces of a cube, if such surfaces separated
volumes of different colors. The determination of these
separating faces, for each cube rendered by the volume re-
cursion above, also requires recursion. The recursive
pseudocode below is called for each front-facing face of a
volume rendered cube C at recursion level k.
Draw (k, F, C)(

if(F lies on one of the outside faces of
the level 0 cube) (render(F); return;>

find the cube D of the same size as C an
the opposite side of face F;

if(Color(D) is homogeneous or k == kmax)
if(Color(D) != Color(C) 1 render(F);

else
subdivide F into four subfaces ~~11,

bounding four subcubes Cs[lof C;
for(i = 0; i < 4; ++i)

Drawlk+l, Fs[i], Cs[il);
)

Because all rendering was done by the SGI hardware,
through OpenGL calls, it only took a few seconds a frame.
The images were generated at 1270 X 970 pixel resolu-
tion, and then averaged down to 635 X 485 resolution for
video recording, providing 2 X 2 supersampled antialias-
ing.

Acknowledgments
This work was performed under the auspices of the

U.S. Department of Energy by Lawrence Livermore Na-
tional Laboratory under contract number W-7405.ENG-
48. Brett Keating produced the marble texture, using algo-
rithms from [P&35]. Mark Duchaineau provided a win-

dow opening and image read-back facility that relieved me
of learning the details of X. Dietmar Saupe pointed me to
reference [Liu97]. Brian Cabral and Dan Schikorc provid-
cd debugging help. Jan Nones, Ross Gaunt, and Eugene
Cronshagen recorded the video. Don Patterson, Mike Mill-
er, and Charlene Frey connected my system rapidly back
up to our internal network after a hacker break-in, so that I
was able to record the video and print the paper.

References
[Liu97] Xian Liu and Giinther Schrack, “An algorithm for

encoding and decoding the 3-D Hilbert order”, IEEE
Transactions on Image Processing Vol 6, No. 9 (1997)
pp. 1333 1337.

[Per1851 Ken Perlin, “An image synthesizer”, Computer
Graphics Vol. 19 No 3 (Siggraph ‘85 Proceedings,
1985) pp. 287 - 296.

[WMS98] Peter Williams, Nelson Max, and Clifford
Stein, “A high accuracy volume renderer for unstruc-
tured data”, IEEE Transactions on Visualization and
Computer Graphics, Vol. 4 No. 1 (1998)

